Skip to main content

Inequality

(BOOLE'S INEQUALITY): P(k=1Ak)k=1P(Ak)P(\bigcup_{k=1}^{\infty} A_k)\le \sum_{k=1} ^{\infty} P(A_k)

(BONFERRONI'S INEQUALITY): P(k=1Ak)1k=1P(Akc)P(\cap_{k=1}^{\infty} A_k) \ge 1 - \sum_{k=1} ^{\infty} P(A_k^c)

(MARKOV INEQUALITY): XX is a non negative random variable, a>0,P(Xa)E[X]a\forall a > 0, P(X \ge a)\le \frac{\mathbb{E}[X]}{a}

(CHEBYCHEV's INEQUALITY): XX is a random variable with finite mean μX\mu_X, a>0,P(XμXa)Var[X]a2\forall a > 0, P(|X - \mu_X| \ge a)\le \frac{Var[X]}{a^2}

(CHERNOFF's INEQUALITY): XX is random variable with MGF mX(t)m_X(t), a,P(Xa)eatmX(t)\forall a, P(X \ge a)\le e^{-at}m_X(t)

(CAUCHY-SCHWARTZ INEQUALITY): Cov(X,Y)Var[X]Var[Y]|Cov(X,Y)| \le \sqrt{Var[X]Var[Y]}

  • prove by correlation definition: Corr(X,Y)=Cov(X,Y)Var[X]Var[Y]1|Corr(X, Y)| = |\frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}}| \le 1

(JENSEN's INEQUALITY): XX is random variable with a convex function ff s.t. E[f(x)]\mathbb{E}[f(x)] is finite, then f(E[X])E[f(X)]f(\mathbb{E}[X]) \le \mathbb{E}[f(X)], fliped inequality is true when ff is concave.

  • ff is linear cause equal.